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A system of equations for evolution of the size spectrum of gas bubbles as a result of their breakup in an 

isotropic turbulent damped flow of an incompressible liquid is derived and solved numerically, 

Some technological processes, e.g., water purification and flotation of ores, require a gas-liquid medium 

with a known size distribution of gas bubbles and a prescribed density. One of the methods for preparing such a 

medium, adopted in practice, may be gas dispersion under hydrodynamic cavitation conditions followed by gas 

bubble breakup in a turbulent liquid flow [1 ]. The present work is an attempt to construct a theoretical model of 

gas bubble breakup in a turbulent flow. The theoretical model is formulated as a problem of calculation of the 

evolution of a prescribed probability density of gas bubble size distribution in an isotropic turbulent flow of an 

incompressible liquid. The initial form of the distribution is chosen such that it may be implemented under 

hydrodynamic cavitation conditions. As is known from experiments [1 ], in the range of cavitation numbers of 

K = 0.03-0.05 the amount of gas absorbed by a liquid increases drastically. At the same time the characteristic 

size of gas bubbles is commensurable with the size of inhomogeneities of the cavities formed in this regime (of the 

order of several millimeters). Further evolution of the gas-liquid medium obtained in this way involves bubble 

breakup by turbulent velocity pulsations, bubble collision, and their coalescence. In the present work we will 

consider only turbulent breakup of gas bubbles without regard for coalescence. Owing to this restriction the gas 

saturation effect is insignificant. The influence of gas saturation and coalescence on the size spectrum of bubbles 

will be taken into account in subsequent work. 

I. Distribution Function ft(r). As the subject of investigation, we will choose a probability density function 

ft(r) that is defined so that the expression ft(r)dr is the probability of finding a gas bubble in the size range 

r - (r + dr) in a unit volume of a liquid. From the definition it follows that the normalization condition is 

? ft (r) d r=  1, 
( 1 ) 

o 

which means that at any moment of time some bubble will certainly be found at any point of a homogeneous 

turbulent flow. A state of the complete absence of bubbles is described by the function ft(r) -- 6 (r), where 6 (r) is 

the Dirac function. The function ft(r) = ~ (r - L) corresponds to a state of the system with bubbles of the same size 

r = L .  
The function ft(r) describes the portion of bubbles with size r: 

f t  (r) = n t ( r ) / N  (t) , (2) 

where nt(r) is the quantity of bubbles with size r, and N(t) is the total number of bubbles per unit volume of the 

gas-liquid system: 
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(3) 
N (t) = J n t (r) dr .  

0 

It is apparent  that in the course of breakup nt(r) and N(t) change with time. The expression 

4 3 (4) Vg (r , t) = -~ ~r  n t (r) 

determines the volume of the gas contained in bubbles with radius r. The expression 

4 | (5 )  Vg (t) = -~ Jr f r3nt (r) dr 
0 

relates the total gas volume per unit volume of the gas-liquid system to the volume of the gas contained in bubbles 

with radius r. Using formulas (2) and (5), it is easy to obtain a relationship between Vg(O and the distribution 

function ft(r): 

4 _ 7 r3ft(r) dr (6) Vg (t) = -~ urN (t) 
0 

In formulating the problem of turbulent breakup of gas bubbles the function Vg(t) must be prescribed as the initial 

condition 

Vg (0 It=0 - Vg (o). (7) 

In this case, we may write an expression for the total quantity of bubbles: 

U (t) = Vg (O)/-Vg ( t ) ,  (8) 

where 

-- 4 ~ r3ft (r) dr (9) Vg ( t) = 
o 

is the mean volume of a bubble. Obviously, in a breakup process N(t)  is a function that increases monotonically 

with time. 

2. Breakup Condition of Bubbles in a Turbulent  Flow. Bubble breakup in a turbulent flow occurs when the 

intensity of turbulent  velocity fluctuations exceeds some threshold value that is different for different bubble sizes. 

In other  words, for a turbulent field of prescribed intensity some critical bubble size exists such that bubbles with 

a radius larger than the critical one break up. 

We now write a formula for the critical bubble size in the form (formula (89.3) in [2 ]) 

acr - -~ (1 /k f )  1/3 cr (p /p ' )  l / S /  (pU2/2)  . (10) 

where k / i s  the drag coefficient of a gas bubble moving in a liquid; a is the surface tension coefficient; p and p '  are 

the density of the liquid and the gas, respectively. For air and water k /=  0.5, a = 7 .35 .10  -2  N /m ,  p '  = 1 kg/m 3, 

p = 103 kg /m 3. U 2 is the mean-square velocity difference over a distance of the bubble diameter. In essence 

U 2 = ( AL~ L (2ac t ) ) ,  (11) 

where AUL(X) is the velocity difference between the points spaced at a distance x in a turbulent flow. From formula 

(11) it is seen that in the case of a turbulent isotropic velocity field U z may be evaluated as the longitudinal 

structural function DLL(r, t) calculated at r -- 2act [3 ]: 
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U 2 = DLL (r,  t) l~=2acr. (12) 

Henceforth it is useful to employ the expression relating the structural function DLL(r, t) to the function 
Pt(r) that describes the energy distribution of turbulent pulsations over length scales [4 ]: 

r 

DLL (r ,  t) = 2 f Pt (r) dr. (13) 
o 

Then the expression for U 2 in formula (10) in terms of Pt(r) is as follows: 

2act 
u 2 = 2 f e t  (r) d r .  

0 

(14) 

With account for (14) formula (10) may be written as 

2acr(t) 
acr (t) f Pt (r) dr = (1 /k[ )  1/3 ( a / p )  ( p / p , ) l / 3 .  

0 

(15) 

Solving Eq. (15), acr(t) may be calculated as a function of time. We shall now write the breakup condition: 

r > act (t). (16) 

It is noteworthy that the breakup condition presented in the form of formulas (15) and (16) is an extension of 

formula (10) to the nonequilibrium case where a turbulent velocity field may be nonequilibrium, e.g., in the case 

of turbulence immediately behind a grid or in a zone of sudden expansion. In this case, Pt(r) may be calculated 

from the closed equation of [4] for this function. 

3. Derivation of the Equation for ft(r). We shall write an equation for the probability distribution function 

ft(r) in the case where bubbles break down into smaller ones without coalescence in a turbulent isotropic field. 

We subdivide the entiresize spectrum of the bubbles into macro- and microcomponents. The portion of the 

bubbles with radii less than r will be termed the microcomponent, and that with radii larger than r, the 

macrocomponent: 

r (17) 
f f t  (R) dR = M u ,  f t  (R) dR  = M a . 
o r 

Next, we write the equality 

0 (18) 
O'--t f t  (R) dR  = - W (r,  t). 

r 

where W(r,  t) is the probability flux through the point r in the space of bubble sizes. 
From the form of (18) and the fact that only the bubble breakup process is accounted for it follows that 

the function W(r,  t) is positive. We now assume that the structure of the probability flux W(r,  t) is related to [t(r) 

by the following formula: 

~o (r, R) (19) 
W (r ,  t ) =  f t  (r) r (r , R)  d R .  

r 

Here ~(r, R) is the probability of transfer of the macrocomponent M a to the microcomponent M i through the point 

r. The function z(r,  R)  is the time of breakup of a bubble of radius R into bubbles of radii less than R. We also 
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assume that the breakup time does not depend on what bubbles the bubble of radius R splits into but depends only 

on the size of the splitting bubble: 

(r ,  R) - r (R). (20) 

The time of bubble collapse in a deforming velocity field may be evaluated from a stability analysis of a liquid 

sphere in a flow of another liquid [5, 6 ]. This evaluation results in the formula 

2R 
(R) = (4mr/p') ~, /p)l /z  f 

o 

3 / 2  

Pt (r) dr 
(21) 

where 

n = In (2R/~) ,  d = 

We represent ~o(r, R) in the form 

f re  t(r) dr f e t ( r )  dr . 
0 0 

(22) 

r (23) 
~ (r,  R ) =  f oJ ( 7", R) dT'. 

o 

Here the function co(r, R) is the contribution of passage from the point R to the microcomponent (0-r)  through 

the boundary r to the total probability. Equality (23) merely indicates that the probability of breakup of a bubble 

of radius R into bubbles of radii 7'< r consists of the sum of the probabilities of all the transitions R --> 7'where 7' 

E (0-r) .  From the physical meaning sense of the function o9(~, R), it follows that the following equality is valid: 

R I 1 , if R > acr, (24) 
f o J (7 ' ,  R) dT '=[  0 if R <  act 
0 ' " 

For the function ~o(r, R) this means the following condition: 

A 

~o(R, R) = 0 ( R - a c r  ) .  (25) 

Here O(x) is the Heaviside step function. 

Equalities (24) and (25) indicate that the probability 

to split into bubbles of any sizes smaller than R is equal to 

prescribed turbulent velocity field, then ~o(R, R) = 0. 

Substituting expression (23) for ~o(r, R) into equality 

for a bubble of radius R larger than the critical one 

unity. If an initial bubble is too small to split in a 

(19), we rewrite Eq. (18) in the form 

r r 0 

Differentiating the left- and right-hand sides of (26) with respect to r, we arrive at 

(26) 

o:t (r) it (r) (7", r) dT'+ It (n) (27) 
Ot - r (r) 0 r ~ ( R )  c o ( r ,  R) d R .  

The first term on the right-hand side of equality (27) is the decrease in the probability of a bubble of radius r due 

to breakup into smaller ones of radius 7"< r. Using (23)-(25), we may simplify this term. As a result, Eq. (27) for 
ft(r) acquires the form 
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Oft (r) ft (r) 0 (r (t)) + ~ ft (R) (28) 
O----~ " = -  r(----~ - a c r  r ~ w ( r ,  R) dR. 

As inspection of (28) reveals, the first term on the fight-hand side of the equation is the rate of decrease 

of the probability ft(r) at the point r, depending on the breakup time T(r). This rate vanishes for bubbles of radius 

r < acr(t). 
The second term in the fight side of Eq. (28) forft(r) is the increase in the probability of bubbles of radius 

r due to breakup of all bubbles of radii R > r. As is obvious from physical considerations, the function co (r, R) 
must satisfy the following condition: 

{ O  ( r ,  R) ,  if R > r ,  R > acr , (29) 
o g ( r ,  R) = 0 ,  if R < r ,  R <  acr. 

This equality may be written in the form 

( r ,  R ) = 0 ( R - r ) 0 ( r - a c r  ) ~ ( r ,  R) .  (30) 

The form of the function ~(r, R) should be chosen from physical suppositions. As is known from 

experiments, breakup of bubbles into smaller ones, if it occurs, may be implemented by numerous methods [2, 6 ]; 
however, quantitative information sufficient for constructing the function ~(r, R) is not available. Taking into 
consideration the qualitative experimental finding that in regimes with a Weber number differing slightly from its 

critical value a bubble breaks up into two large fragments [6 ], the hypothesis that the function ~(r, R) describes 

bubble breakup mainly into two equal parts may be adopted. Although other possibilities are not ruled out, they 

decrease with increase in the asymmetry of bubble breakup in accordance with the normal distribution law. 

The segment of the boundary of the domain of nonzero values of the function o9 (r, R) that is described by 

the equation R = act(t) in accordance with formula (15) is displaced as the structure of the turbulent velocity field 

changes in a liquid that is described b y  the function Pt(r). The maximum R values with respect to which the 

integration in (28) is performed are not restricted by o9 (r, R). This restriction is imposed by the initial probability 

distribution fo(R) and the circumstance that no bubbles larger than those prescribed initially appear in the system 

during turbulent breakup. 
Bubbles that split into two equal parts, i.e., with R -- 21/3r, give the maximum contribution to the rate of 

decrease of the function ft(r) at the point r as a result of breakup of bubbles of radius R into two parts. Therefore 

~(r, R) acquires the following form: 

1 ( r ,  R) = ~ exp { - (r - R/3v~ )2/2at 2 }. (31) 

The value of the dispersion ar is chosen sufficiently small for the function o9 (r, R) to be small at the boundary of 

the domain of definition in the variable r (r-- 0, r-- R). If we use the 3ar rule, then we obtain ar <-- 0.06R. In (31), 

N is a normalization factor. It may be calculated from the condition 

R (32) 
f ~ ( r ,  R) dr= 1, 
o 

which states the obvious fact that creation of a bubble of radius r < R due to turbulent breakup of a bubble of 

radius R > acr(t) is certain. 
Integration of (31) in accordance with (32) yields 

N =  g ( g ,  O'r) = cr rV ryr/2 (cI) [ (3V~--  l) g/(25/6tyr)] + t~ [R/(25/6tyr)] ) ,  (33) 

where 
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,Colt, R) 

r 

I r=R  

Fig. 1. Form of the function co(r, R) determined by formulas (31)-(34). 

x (34) 
q b ( x ) = !  f e x p ( - t  z) dt .  

v ~  0 

The function co (r, R) defined on the plane (r, R) is shown in Fig. 1. 

It should be noted that in solving Eq. (28) for ft  (r) at points r < acr(t ) the first term on the right-hand 

side of the equation disappears, and integration in the second term, as seen from the graph of co(r, R), starts from 

the point R = act(t). 

From the definition of ft(r) as a probability density it follows that the normalization condition (1) must be 

fulfilled for it at any moment of time. If at the initial moment of time the function is stipulated to be normalized 

to unity, then to preserve normalization at any t it is necessary to fulfill the condition 

o_ (as) J f t (r)  d r = O "  
Ot o 

This condition is actually fulfilled, which is easily proved by integrating the right-hand side of Eq. (28). 

Thus, the equation forft(r) in the form of (28) together with formulas (21), (22) for r(R) and (30), (31), 

(33), (34) for co(r, R) and the closed equation for Pt(r) that describes the energy distribution of turbulent 

fluctuations over different scales [4 ] constitute a closed system of equations. Solving this system, one may follow 

the evolution of the probability distribution of bubbles sizes in an isotropic damping turbulent flow. The initial form 

of ft(r) may be prescribed as a slightly smeared one-scale distribution with the mean length scale to. As will be 

shown later, the results of numerical calculations are not very sensitive to the form of the initial distribution. 

4. System of Equations in Dimensionless Form and Numerical Solution. Prior to solving the system of 

equations, we shall choose characteristic quantities and write the complete system of equations in the dimensionless 
form. As the characteristic quantities we choose: 

- the length scale rx -- L, where L is the mean scale of the initial vortex; 

- the value of ft(r) ~, fx = 1/L; 
- the value of co(r, R) ~, cox = l /L;  
- the velocity of turbulent pulsations U'x = x/-B-~, where B(0) is the mean-square velocity of longitudinal 

pulsations at the initial moment of time; 

- the time tx = rx/U'x = L/V-B(-Off; 
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- the function Pt(c) ~ Px = B(O)/L. 

Denoting dimensionless variables by symbols with a bar, we obtain 

f t ( r )  = f t ( r ) / L ;  eg(r,  R ) = w ( r ,  R ) / L ;  

r (R) = ~ ( "R ) L / ~ / B  (0) ; (36) 

o/or = ( B (O)/L ) o/gi. 

Here 7 -- r/L; R --- R / L .  

The equation for ft(r) in terms of dimensionless variables looks like (28): 

~ 7 ( 7 ) / O t = f z ( 7 ) O ( - i - - d c r ( 7 ) ) / - f ( 7 )  + ~  7 7 ( 7 ) W ( 7 ,  R ) d R / ~ ( - R ) .  (37) 
u 

The expression for ~(r) acquires the form 

8 rt (p ' / p ) l l 2r 2~ ] - 3 / 2  

r (R) = We 0 o Pt ( 7 ) aft I ' (38) 

where Weo is the Weber number determined in terms of the initial bubble radius r 0 and the mean-square velocity 
B(0): 

We o = 2r o p 'B ( 0 ) / a ,  (39) 

I 

n = In (2R/6) :  c3 = z~ z~ (40) f 7PT(7)aT/f PT(7)aT. 
0 0 

The equality for determination of ~cr(~) becomes 

2acr(7) - 2r~ - kf) 1 / 3 G(7) f eT(~)d~=---(1 (p,/p)2/3 
0 L We 0 " 

(41) 

The form of U(7, R) in terms of dimensionless variables remains unchanged: 

09 ( r ,  R ) = 0 ( n - r )  0 ( R  - acr (7 ) )  exp ( -  (r - R / a v ~  )2 /2a r2 ) /N ,  (42) 

where 

ar 2576 +alp ar 25/6 " 

The initial condition for fT(r) may be written in the parabolic form fo(r) --A(7 - 70) 2 + B where 70 = ro/L.  If we 
choose the halfwidth of the initial probability distribution of bubble radii to be equal to A, then the normalization 

condition for fo(r) yields the equalities A = - 3 / 4 A  3, B = 3/4A. Thus 

70 (r) = - 3 ( 7  - 70)2 /4A 3 + 3 / 4 A ,  (44) 

where A = A/L .  
The equation for Pt~r) has the form 
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o . . . . . . . .  b.s 'b  . . . . . . . .  . . . . . .  Z #  . . . . . .  F-" 
Fig. 2. Evolution of the function f t-(r) for different initial mean radii 70 of the 

bubbles (Reo -- 104, A = 0.2, t = 7- 10 -4  sec, r 0 = 70" 10 -3 m). 

0ff7(7)/07=0 2/Reo+2,,,,j" "/F~7(F)dF (,3/07+4/7)~7(7) /oF, 
o 

where 7 = 0.24. The  initial and boundary  conditions for ~tt(7) are as follows: 

(45) 

P7 (7)17=0 : 2T exp ( - r 2 ) ;  P7(7) It=0 =-- h ( 7 )  Ir=  : 0, (46) 

Equations (37), (45) were solved by an implicit finite-difference method combined with iterations of 

nonlinearities. The  initial condition for Pt-(r) was prescribed by (44). The initial and boundary conditions for 

P t-(r) were given by (46). In solving for Pt-(r), the factorization method was employed. The  step of the spatial grid 

was chosen to increase with 7. The  convergence of the iterations at each time step was evaluated by fulfilment of 

the inequalities I(P s - P s + I / ( P  s + Ps+l) l  < 10 -5, I(f s - f s+l ) / ( f s  + fs+l)l  < 10 -4,  where  Ps and  fs are the 

values of the functions P T(r) and ft~r) in the iteration with numbered by s. 

5. Results of Numerical  Solution of the System of Equations for ft(r). Figure 2 shows the evolution of the 

probability distr ibution function of bubble radii ft-(r) for different initial mean radii of bubbles. The initial 

distribution fo(r) is given in accordance with formula (44) for 70 = 1 and To -- 2. As is seen, the evolution of fT(r) 
under the action of the turbulent  velocity field is manifested mainly in a shift toward smaller bubble sizes. In a 

time t = 1.25.10 -4  sec the distribution function is seen to attain its stationary value. A comparison of the evolution 

of ft-(r) for two initial mean bubble radii ro allows the conclusion that this parameter  exerts a weak influence on 

the time for attaining the final distribution. Inspection of the evolution of h(r)  in the cases when the mean bubble 

radius is twice the mean turbulence scale and when they coincide (Figs. 5 and 1, respectively) reveals that the 

corresponding distributions almost coincide in shape already at t = 0.5.10 -4  sec. This insensitivity of the total 

breakup time to a change in the initial scale is due to the fact that the breakup time of a bubble of radius r decreases 

substantially with increase in the radius. As is seen from Fig. 3, the breakup time r(r)  increases drastically when 

the radius is smaller than T-- 0.5. As a result, the final almost stationary probability distribution is established 

slowly. Moreover, z(r) increases greatly as the turbulent energy decays. Divergence of the curves for different Re0 

indicates that r(r)  decreases with increase in the Reynolds number. 

Figure 4 shows the critical bubble radius act(t) as the turbulent flow evolves for different Re. First the 

critical radius is seen to decrease due to the size reduction of the turbulent flow. Then  acr(t ) begins to grow, which 

is associated with attenuation of the turbulent energy. A comparison of the change in the acr(t ) curves with the 

evolution of ft(r) demonstrates that all the bubbles with radii r > acr(t) manage to break up before the critical radius 

begins to increase due to damping of the turbulence. 
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Fig. 3. Characteristic breakup time of bubbles versus radius for different 
initial Reynolds numbers. 

Fig. 4. Time variation of the critical bubble radius for different initial 
Reynolds numbers. 
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\ 
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~2 r 

Fig. 5. Evolution of the function h-(r) for different A values in the initial 
distribution (Reo = 104, t =-t. 10 -4 sec, 70 -- 1). 

The aforementioned insensitivity of the total evolution time for ft-(r) to the form of the initial distribution 

is seen in Fig. 5, where the evolution of this function is shown for two different values of the parameter A which 

determines the dispersion of the initial distribution at one and the same mean bubble radius. Already at t = 

0.5.10 -4 sec the functions almost coincide, although their forms differ strongly at t = 0. Upon further evolution 

this coincidence is preserved. 
Thus, the mean initial bubble size and the dispersion of the initial distribution prove to be insignificant 

for control of the resultant size distribution of the bubbles. This conclusion is confirmed by investigation of integral 

characteristics of/y(r).  
The mean bubble radius is determined from the relation 

r (~)  = 7 r fT(r)  dr. (47) 
0 
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Fig. 6. Evolution of the function ft-(r-) for different Re0 values (L -- 10 -3 m, 

= 0.2, tx = 10 -4  sec). 

Fig. 7. Time variation of the mean bubble radius for different initial Reo in a 

damping turbulent flow (L = 10 -3 m, A = 0.2, t x = 10 -4 sec, 70 = 1). 

Calculations show that for any initial values the mean radius 7(t) tends to one and the same value, approximately 

equal to 7 (~)  = 0.3. Here, the factor of proportion between the initial mean length scale of the turbulent velocity 

field and the initial mean size of t he  bubbles is insignificant until the initial radius exceeds the critical bubble size 

determined by formula (41) at any moment of time. As has been shown, the dependence of 7(-/) on the dispersion 

of the initial distribution is insensitive to the choice of this quantity. 

The  dispersion of the distribution ft-(r) as a function of time is determined from the formula 

a ( t ) = r  ( r Z ( t ) - r : ( t ) ) ,  (48) 

where 7(0 is determined by (47) and r2(t) is calculated from the expression 

r 2 (t) = ~ r 2 f ~ ( 7 )  arr. (49) 
0 

The dispersion dr(t) of the distribution undergoes a complicated evolution but it ultimately attains one and the same 

value for different 70 . The  jump in the dispersion dr(t) in the initial stage of evolution is associated with spectrum 

rearrangement  due to transfer  of the probability density from the region of large radii to that of small ones. The 

fact that the dispersion attains a constant value at 7 = 2.5 points to cessation of evolution of/t-(r).  This means that 

the system has no bubbles whose radii are larger than the critical one, i.e., bubbles capable of breaking up. 

The change in the dispersion ~(~) for different A values is the same in the initial form of the distribution 

as that in the dispersion for different 70 values. In the initial stage of distribution evolution a sudden increase in 

the dispersion is observed, followed by a gradual decrease in ~(-/) with attainment of a constant value as the bubbles 

cease to break up. 

From the aforesaid it follows that a change in the form of the initial distribution fo(r) does not entail a 

substantial change in ft-(r) and does not exert  a pronounced influence on the time for attaining a stationary 

distribution. 

A more effective means of controlling of the probability distributions of bubble sizes is a change in the 

turbulence parameters.  Figure 6 shows the evolution of the function ft-(r) calculated for different Re 0. Variation of 

Re o was achieved with a constant length scale L by changing the energy of turbulent pulsations. It is seen that 

bubbles break up more vigorously at greater Reo, which agrees with the aforementioned decrease in the breakup 
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Fig. 8. Comparison of the theoretical (curve) (Re0 -- 3.104, L - 1.5 mm, "[ = 

3.015) and experimental (points) distributions ~oT(r). 
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time r(R) with increase in Re 0 (see Fig. 3). In this case, the probability distribution f~(r) for higher Re0 numbers 
is stabilized at smaller bubble sizes. 

As is seen from Fig. 7, where the change in the mean bubble radius with time is shown for different Reo 

and a constant initial length scale, the distribution is stabilized more quickly at large Reo. At Reo = 2.104 the mean 

bubble radius is smaller by a factor of 2.5 than at Reo = 104. 

The results in Figs. 6, 7 demonstrate that an increase in the turbulent energy is an effective means of 

controlling the size distribution of bubbles. As is seen from Fig. 6, the final distribution is narrower at large Re0, 

i.e., the dispersion of the bubble size distribution decreases substantially with increase in the turbulent energy of 

the flow. 

Variation of the mean bubble size in a stationary distribution may be also achieved by changing the initial 

scale of the turbulent velocity field. Calculation results for the time variation of the mean bubble radius and the 

mean dispersion a(t) for different initial scales L and a fixed Reo show that the smaller the scale of the initial 

structural of the turbulent velocity field, the more vigorous the bubble breakup and the more rapid the stabilization. 

Examination of the final mean bubble radius versus the initial macroscale of the velocity field shows that 

a twofold decrease in L results in a 2.5-fold decrease in 7. Thus, by changing the initial scale of the turbulence 

length one may control effectively the final size distribution of the bubbles. 

Figure 8 shows the curve ~fT") = ft-(r)/~t-(7)max calculated theoretically using the proposed model and 

experimental points obtained at the outlet of a cavitation generator. It is seen that theory and experiment agree 

satisfactorily for small bubble sizes. The fact that the probability of the experimental dependence exceeds somewhat 

that of the theoretical one for large bubble sizes is explained by neglect of coalescence in the present model, which 

may occur under the experimental conditions. 
Conclusion. A theoretical model of bubble breakup in a turbulent  isotropic damping flow of an 

incompressible liquid is proposed. It is assumed that the turbulence parameters for the liquid are independent of 

the presence of bubbles in the flow and they are calculated from a closed equation for the function Pt(r) that 
describes the distribution of turbulent velocity pulsations over different length scales. The bubble size distribution 

density is calculated from a linear integral equation whose variable coefficients are linearly related to the function 

Pt(r). Having solved numerically the proposed model, we draw the following conclusions. 

The evolution of the probability distribution density of bubble radii ft(r) under the action of a turbulent 

velocity field consists mainly in a shift toward small bubble radii in a finite time. 
The breakup time of bubbles and the final form of ft(r) are not very sensitive to the mean scale and 

dispersion of the initial distribution of bubbles. 
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The rate of bubble breakup is such that all the bubbles manage to break up before the critical radius 

increases due to dissipation of the turbulent energy. 

The mean radius and dispersion of the final distribution of bubbles are independent of the corresponding 

parameters of the initial distribution. 

The sudden rise in dispersion for intermediate times is explained by transfer of probability from the region 

of large-radius bubbles to the region of small-radius bubbles. 

With increase in the initial Reynolds number with a fixed initial scale of the turbulent velocity field the 
bubbles break up more vigorously. The distribution stabilizes more quickly at large Re0. 

At large Re0, ft(r) stabilizes at smaller values of the mean radius and dispersion. 

A decrease in the initial length scale of the turbulent velocity field at a fixed initial Reynolds number yields 
results similar to those obtained for an increase in Re0 with a fixed L. 

The authors thank the Foundation for Fundamental Investigations of Belarus for financing the work. 

N O T A T I O N  

ft(r), probability density of the bubble radius; Pt(r), turbulence energy distribution over different length 

scales; act, critical bubble radius; Weo, Weber number; w(r, R), function describing the breakup of bubbles of 

radius R into bubbles of radius r; or, surface tension coefficient; z(R), characteristic time of bubble breakup; Reo, 

turbulent Reynolds number determined in terms of the initial macroscale L of the turbulent velocity field and the 

initial energy of the turbulent flow B(0); 7(0, mean bubble radius as a function of time; ar, dispersion of the 
distribution co (r, R); A, width parameter of the initial distribution fo(r). 
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